fixed functions of stribolic operators (non-linear, convex analysis)
combinatorics
Levine and golombic sequences
arithmetic geometry
algorithmic number theory
Witt vectors
categories and functors
Publications
R. Miyamoto:
Solution to the iterative differential equation –γg' = g⁻¹.arXiv/2404.11455
[math.CA] 2024.
R. Miyamoto:
Polynomial parametrisation of the canonical iterates to the solution of –γg' = g⁻¹.arXiv:2402.06618
[math.CO] 2024.
R. Miyamoto, J. W. Sander:
Solving the Iterative Differential Equation –γg' = g⁻¹.
In: H. Maier, J. & R. Steuding (eds.):
Number Theory in Memory of Eduard Wirsing,
Springer, 2023, 223–236.
DOI
R. Miyamoto, J. Top:
Reduction of elliptic curves in equal characteristic 3 (and 2).
Can. Math. Bull. 48/3 (2005) 428–444.
DOI
R. Miyamoto:
Kreisförmige Spiele und Ideale.
Ein spielerischer Zugang zur elementaren Theorie von Ringen und Idealen,
gerichtet an mathematikinteressierte Schülerinnen und Schüler
der Klassenstufen 10–13.
Masterarbeit, Georg-August-Universität Göttingen, 2004.
R. Auer, J. Top:
Some genus 3 curves with many points.
ANTS V Proceedings, LNCS 2369 (2002) 163–171.
DOI.
arXiv/math/0201320
[math.NT] 2002.
R. Auer, J. Top:
Legendre elliptic curves over finite fields.
J. Number Theory 95/2 (2002) 303–312.
DOI.
arXiv/math/0106273
[math.NT] 2001.
R. Auer:
A functorial property of nested Witt vectors.
J. Algebra 252 (2002) 293–299.
DOI.
PDF
R. Auer:
Curves over finite fields with many points obtained by ray class field extensions.
ANTS IV Proceedings, LNCS 1838 (2000) 127–134.
DOI.
PDF
R. Auer:
Ray class fields of global function fields with many rational places.
Acta Arith. 95/2 (2000) 97–122.
DOI.
arXiv/math/9803065
[math.AG] 1998